
// Security Assessment 10.29.2025 - 11.11.2025

Hedera Blockchain
Network
Swirld Labs (now Hashgraph)

H e d e ra B l o c kc h a i n N e t wo r k - Sw i r l d L a b s (n ow

H a s h g ra p h)

Prepared by: HALBORN

Last Updated 01/14/2026

Date of Engagement: October 29th, 2025 - November 11th, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

1

CRITICAL

1

HIGH

0

MEDIUM

0

LOW

0

INFORMATIONAL

0

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Scope & environment
4. Test approach and methodology
5. Risk methodology
6. Scope
7. Assessment summary & findings overview
8. Findings & Tech Details

8.1 Consensus node - denial of service

1 0 0%

1 . I n t r o d u c t i o n

Hashgraph engaged Halborn to conduct a Penetration Test on their systems, beginning on Oct
29th 2025 and ending on Nov 11th 2025 . The security assessment was scoped to the web
components that Hashgraph shared with the Halborn team. See the 'Scope' section for more
details.

2. A s s e s s m e n t S u m m a r y

The Halborn Team were allocated four days for this engagement, during which one full-time
security engineer — expert in blockchain, web, and API security — conducted a comprehensive
audit of the in-scope webapp components related to Hashgraph systems. This engineer
possesses advanced skills in penetration testing, web application security assessments, and an
in-depth understanding of multiple blockchain protocols.

The primary objectives of this audit were to:

Verify that each component performs its intended functions accurately and reliably.
Identify and assess potential security issues within the application, particularly those that

could impact the management and protection of digital assets.

Additional objectives included evaluating adherence to industry best practices, ensuring robust
security measures are in place, and identifying opportunities for further strengthening the
security posture.

All components behaved as expected across positive and negative tests, with one exception: the
critical finding that allowed to take down the Consensus Node.

Submitting oversized topic messages without limiting chunks causes the SDK to auto-chunk into
multiple transactions. Under sustained bursts, this increased inbound pressure and memory use
on the Consensus Node. This behavior aligns with the repeatable OutOfMemoryError: Java heap
space events observed in your logs and during our re-runs. There is no evidence of asset integrity
or authorization issues, but the service-level impact is critical.

As mentioned, the JSON-RPC Relay and Mirror Node showed consistent, correct behavior in the
tested scope. The Consensus Node enforced signature and transaction rules as expected across
edge cases. The main risk is an availability weakness tied to high-volume, auto-chunked HCS
submits.

Introducing chunk-aware throttling and back-pressure at ingress, combined with sensible per-
client budgets/limits, should materially improve resilience without affecting legitimate workloads.

3. S c o p e & E n v i r o n m e n t

All the components were initially self-hosted by Halborn on EC2 instance in AWS.

The SOLO version that Halborn was requested to use was v0.48.0 .

Assume that the EC2 instance public IP was 1.2.3.4 .

In-scope components:

JSON-RPC Relay (Ethereum-compatible) — http://1.2.3.4:7546/
Mirror Node REST API (read-only) — http://1.2.3.4:8081/ (OpenAPI at /api/v1/docs/)
Consensus gRPC — 1.2.3.4:50211

The Consensus gRPC interactions needed to be exercised via Hedera SDK
(https://github.com/hiero-ledger/hiero-sdk-js) per client guidance.

Out of scope: Smart contracts, mainnet/testnet/previewnet, infra hardening checks (DoS/rate-
limit/CORS/TLS/headers) due to self-hosted environment.

After several days after the engagement started, Hashgraph team provided a new fresh
environment for further testing. The new environment information was:

Network Node IP: 136.111.199.66 (TCP Port 50211)
Mirror Node IP: 34.31.228.61 (Docs in http://34.31.228.61/api/v1/docs/)
Explorer URL: http://34.27.150.139
JSON RPC Relay IP: http://34.46.38.34:7546
JSON RPC Websockets IP: 136.112.75.57

In the SOLO local deployment, the following entities were used for several tests:

Hedera ECDSA Alias accounts pre-provisioned by Solo (EVM-compatible). Primary keys used:

From: 0.0.1012 — 0x105d…1524
To: 0.0.1013 — 0x2e1d…03e7
Confirmed chainId — 298 (0x12a)

For the testing scripts, the payer was 0.0.2 , with Private Key " 302e020<redacted>7f3087137 ".

https://github.com/hiero-ledger/hiero-sdk-js
http://34.31.228.61/api/v1/docs/
http://34.27.150.139/
http://34.46.38.34:7546/

4. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn combined manual and automated security testing to strike the right balance between
speed, thoroughness, and precision within the scope of the penetration test. Manual techniques
were employed to reveal nuanced logical, procedural, and implementation-level flaws, while
automated tools broadened the assessment’s reach—rapidly pinpointing common vulnerabilities
across the entire solution.

Throughout the engagement, we progressed through, among the following —but not limited to—
phases, leveraging both targeted tools and bespoke techniques:

Content & Functionality Mapping
Cataloging every feature and endpoint exposed by the application.

Sensitive Data Exposure
Hunting for leaks of critical or private information.

Business-Logic Testing
Uncovering flaws in workflows, transaction flows, and access controls.

Access Control Assessment
Verifying correct enforcement of permissions and role-based restrictions.

Input Validation & Handling
Ensuring all user inputs are properly sanitized and parsed.

Fuzzing & Parameter Injection
Applying randomized and structured payloads—SQL, JSON, HTML, command-line, directory path
injections—to provoke unexpected behavior.

We executed a grey-box interface robustness assessment focused on:

Positive controls (well-formed, expected happy paths),
Negative/abuse vectors (malformed, boundary, and semantic error cases),
Logical security checks (chain-id mismatch behavior, creation gas validation, oversized

payload handling),
Replay & nonce sequencing (replays, nonce-too-low paths).

The approach emphasizes deterministic JSON-RPC behavior, error hygiene (no 5xx, no stack
traces), and fault isolation (input validation vs. backend failure). All traffic was captured through a
Burp proxy to preserve full evidence.

Over ten days, Halborn reviewed the off-chain components that support the Hashgraph
deployment: the Consensus Node (gRPC), the Mirror Node (REST), and the JSON-RPC Relay.
Halborn combined manual testing with a scripted harness to exercise both normal flows and edge
cases. Every scenario was run in two modes—first with a system-like payer for operational parity,
then with a neutral user account—to rule out environment-specific behavior.

Consensus Node (gRPC)

We validated account lifecycle (create/update/delete), HBAR transfers, and a wide set of failure
conditions: missing or wrong signatures (including ED25519/ECDSA cross-type attempts), invalid
transaction windows, node routing to unknown IDs, payer/account existence, non-zero-sum
transfers, tiny fees, insufficient balances, partial multisig, and reuse of deleted accounts. We also
covered Hedera Consensus Service (HCS) topics: submits with and without submitKey , and large
messages with and without explicit chunk limits. Results were cross-checked against Mirror/Relay
visibility.

Mirror Node (REST)

We verified account, transaction, and node endpoints for correctness and alignment with gRPC
results. Responses consistently matched consensus outcomes. Several tests were carried out,
targeting per-endpoint parameter fuzzing (IDs, timestamps, topics, pagination, sort), injection
separators, and boundary values, also including parameter tampering and type/format fuzz (e.g.,
integer overflow-ish strings, hex form variants, RFC3339 timestamp oddities).

JSON-RPC Relay.

We generated and executed 100+ distinct transactions and raw payload mutations covering:

Transaction types: Legacy (type 0), Access-List (type 1), EIP-1559 (type 2).
Nonce logic: sequences (t2-seq-0..19), replays of exact raw, future-gap nonces (+1, +100).
Fee/gas edge cases: maxPriorityFeePerGas / maxFeePerGas at 0, inverted (prio > max),

very low/high maxFeePerGas , gasLimit ∈ {0,1, very large}.
Chain ID variants: {0, 1, 296, 298} .
Address/data anomalies: to absent (contract creation), short/long/non-hex to , odd-

length/invalid-hex/large data .
Raw-level mutations: strip 0x , odd length, insert “GG”, truncate, large append (~10 KB),

case flips.

Under background activity, Relay behavior remained stable and in sync with Mirror and gRPC
receipts.

5. R I S K M E T H O D O L O GY

Halborn assesses the severity of findings using either the Common Vulnerability Scoring System
(CVSS) framework or the Impact/Likelihood Risk scale, depending on the engagement. CVSS is an
industry standard framework for communicating characteristics and severity of vulnerabilities in
software. Details can be found in the CVSS Specification Document published by F.I.R.S.T.

Vulnerabilities or issues observed by Halborn scored on the Impact/Likelihood Risk scale are
measured by the LIKELIHOOD of a security incident and the IMPACT should an incident occur. This
framework works for communicating the characteristics and impacts of technology vulnerabilities.
The quantitative model ensures repeatable and accurate measurement while enabling users to
see the underlying vulnerability characteristics that were used to generate the Risk scores. For
every vulnerability, a risk level will be calculated on a scale of 5 to 1 with 5 being the highest
likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.
4 - High probability of an incident occurring.
3 - Potential of a security incident in the long term.
2 - Low probability of an incident occurring.
1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.
4 - May cause a significant level of impact or loss.
3 - May cause a partial impact or loss to many.
2 - May cause temporary impact or loss.
1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating a value of 10 to 1 with
10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL
9 - 8 - HIGH
7 - 6 - MEDIUM
5 - 4 - LOW
3 - 1 - VERY LOW AND INFORMATIONAL

https://www.first.org/cvss/

6. S C O P E

REMEDIAT ION COMMIT ID :

https://github.com/hiero-ledger/hiero-consensus-node/issues/22295

Out-of-Scope: New features/implementations after the remediation commit IDs.

7. AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

1

HIGH

0

MEDIUM

0

LOW

0

INFORMATIONAL

0

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

CONSENSUS NODE - DENIAL OF SERVICE CRITICAL SOLVED - 12/19/2025

https://github.com/hiero-ledger/hiero-consensus-node/issues/22295

8 . F I N D I N G S & T EC H D E TA I L S

8 .1 C O N S E N S U S N O D E - D E N I A L O F S E RV I C E

// CRITICAL

Description
During negative and load-style testing of Hedera Consensus Service (HCS), it was observed that
submitting large topic messages without disabling SDK auto-chunking can generate a high
volume of chunked transactions in a short window. When repeated across multiple sizes and runs,
this induces sustained inbound pressure on the consensus node’s gRPC transport and state
snapshotting components (MerkleDB), culminating in java.lang.OutOfMemoryError: Java heap
space and node unresponsiveness (“lights on, no one home”).
Key observations from the affected node:

Recurrent OutOfMemoryError in Netty gRPC transport (NettyServerTransport
notifyTerminated) and background tasks (e.g., idle-timeout-task , JVM pause detector).

Concurrent OOMs while creating periodic signed state snapshots:

MerkleDbDataSource: Snapshot keyToPath failed
MerkleDbDataSource: Snapshot pathToDiskLocationInternalNodes failed

Temporary platform status oscillations (ACTIVE → CHECKING → ACTIVE) followed by the
process becoming effectively unresponsive to clients; SDK errors report “All nodes are
unhealthy”.

I m p a c t

The impact is CRITICAL, as this issue may cause a complete denial of service in the HCS.

Consensus node availability loss. The node exhausts heap and stops servicing requests;
clients receive “all nodes unhealthy” or timeouts.

Network-level degradation. While the issue manifests on a single node in this setup, similar
pressure on a multi-node network could degrade service, increase consensus latency, or trigger
failover behavior.

Operational instability. OOMs occurring during signed state snapshot creation (MerkleDB)
increase recovery time and risk of repeated instability on restart without remediation.

Proof of Concept
Listed below, there are evidences that show how the Consensus Node was not responding after
the attack:

Evidence 1: tried to re-run the test script and got error: All nodes are unhealthy.
Original node list: 0.0.3

$ node halborn-tests-v12.js

───

[2025-11-20T13:26:39.851Z | +0.0s] START
 Network map: { '136.111.199.66:50211': '0.0.3' }
 Operator (payer): 0.0.2

───
[2025-11-20T13:26:39.866Z | +0.0s] ENVIRONMENT CONTEXT
 Network map: { '136.111.199.66:50211': '0.0.3' }
 Operator (payer): 0.0.2

───
 ❌ Execution aborted due to unexpected error:
Error: Network connectivity issue: All nodes are unhealthy. Original node list: 0.0.3
 at n.execute (file:///mnt/c/data/halborn/PENTESTING/HashGraph%5BSwirld%20Labs%5D/2025-10-Ha
 at async c.getCost (file:///mnt/c/data/halborn/PENTESTING/HashGraph%5BSwirld%20Labs%5D/2025
 at async c._beforeExecute (file:///mnt/c/data/halborn/PENTESTING/HashGraph%5BSwirld%20Labs%
 at async c.execute (file:///mnt/c/data/halborn/PENTESTING/HashGraph%5BSwirld%20Labs%5D/2025
 at async file:///mnt/c/data/halborn/PENTESTING/HashGraph%5BSwirld%20Labs%5D/2025-10-HashGra

───

Evidence 2: Same error as above, but this time while using a “Create Account” script from
hiero-sdk-js SDK “examples” folder:

Score

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:L/A:H (9.3)

Recommendation
The following recommendations take into account the feedback that Hashgraph shared, including
error logs and Hashgraph team messages.

H i g h -L e v e l : W h a t To D o

Throttle and budget HCS chunks (per account/topic and globally).
Apply back-pressure in gRPC/Netty to bound inflight requests and buffers.
Constrain auto-chunking (lower max chunks; require explicit opt-in for large messages).
Harden operations (right-size heap/GC; snapshot under load must be memory-bounded).
Continuously test with mixed traffic + auto-chunked bursts and monitor GC/queues.

C o n c r e t e N e a r -Te r m S t e p s

Ingress limits: Enforce per-account/topic TPS and bytes/sec for TopicMessageSubmit , plus a
cluster-wide chunk budget; reject or defer past the limit.

Transport back-pressure: Configure Netty high/low watermarks, cap concurrent streams, and
bound message/frame sizes; add a circuit breaker when GC pauses or queue depths exceed
thresholds.

Auto-chunking policy: Reduce max chunks/message and/or require an explicit flag beyond a
small threshold; consider progressive fees for multi-chunk messages.

Operational guardrails: Increase heap and tune GC (e.g., G1/ZGC) on dev/test nodes; ensure
snapshotting uses streaming/iterative paths with bounded memory.

Validation: Add soak tests that replay large auto-chunked traffic during snapshots; alert on
chunk rate, inflight buffers, and GC pauses.

Remediation Comment
SOLVED: The Hashgraph team addressed this issue.

Remediation Hash
https://github.com/hiero-ledger/hiero-consensus-node/issues/22295

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is crucial for
maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://github.com/hiero-ledger/hiero-consensus-node/issues/22295

