
The Hashgraph Protocol: Efficient Asynchronous BFT for
High-Throughput Distributed Ledgers

To appear in IEEE COINS 2020

Leemon Baird
Swirlds Inc. and Hedera Hashgraph

Dallas, Texas, USA
Email: leemon@hedera.com

Atul Luykx
Swirlds Inc.

San Francisco, California, USA
Email: atul.luykx@swirlds.com

Abstract—Atomic broadcast protocols are increasingly used to build
distributed ledgers. The most robust protocols achieve byzantine fault
tolerance (BFT) and operate in asynchronous networks. Recent proposals
such as HoneyBadgerBFT (ACM CCS ‘16) and BEAT (ACM CCS ‘18)
achieve optimal communication complexity, growing linearly as a function
of the number of nodes present. Although asymptotically optimal, their
practical performance precludes their use in demanding applications.
Further performance improvements to HoneyBadgerBFT and BEAT are
not obvious as they run two separate sub-protocols for broadcast and
voting, each of which has already been optimized. We describe how
hashgraph — an asynchronous BFT atomic broadcast protocol (ABFT)
— departs in structure from prior work by not using communication to
vote, only to broadcast transactions. We perform an extensive empirical
study to understand how hashgraph’s structure affects performance. We
observe that hashgraph can improve latency by an order of magnitude
over HoneyBadgerBFT and BEAT, while keeping throughput constant
with the same number of nodes; similarly, throughput can increase by
up to an order of magnitude while maintaining latency. Furthermore,
we test hashgraph’s capability for high performance, and conclude that
it can achieve sufficiently high throughput and low latency to support
demanding practical applications.
KEYWORDS. Byzantine, Byzantine agreement, Byzantine fault tolerance,
ABFT, replicated state machine, atomic broadcast, hashgraph, gossip
about gossip, virtual voting

I. INTRODUCTION

Atomic broadcast protocols allow a network of nodes to reach
consensus on an ordering of received transactions. They are often
used to build distributed ledgers: users submit transactions to nodes,
who in turn order the transactions by running an atomic broadcast
protocol. The ordered output of the atomic broadcast protocol forms
part of the “ledger”.

Distributed ledger applications, such as payment networks and
marketplaces, place stringent requirements on security and perfor-
mance. When run over public networks, distributed ledgers can suffer
from unreliable connections and denial-of-service attacks. Participants
in the ledger might have incentives to deviate from the protocols.
Furthermore, performance requires low latency to place transactions
in the ledger, while supporting high transaction throughput.

Atomic broadcast protocols which are Byzantine Fault Tolerant
(BFT) [20] operate in the presence of adversarial nodes, making
them suitable for distributed ledger design. BFT protocols which
can run in asynchronous networks are particularly robust against
attacks that can be mounted over public networks. Such asynchronous
BFT (ABFT) protocols ensure that transactions are processed without
timing assumptions, a sensible property to have if adversaries can
arbitrarily manipulate the network in a distributed ledger.

In contrast, BFT protocols that require network synchrony or partial
synchrony only progress when communication is not delayed beyond

a fixed amount of time, and could fail otherwise. Miller et al. [22]
demonstrate situations where ABFT protocols advance where others
cannot, and point out that ABFT protocols progress as soon as
messages are delivered after network partitions, whereas non-ABFT
protocols are slow to recover.

Although ABFT research has a long history [17], only recent atomic
broadcast protocols achieve the optimal asymptotic communication
complexity of O(n) bits flowing through a network with n nodes,
or O(1) bits per node. At a high level, performance is achieved by
optimizing two tasks:

1) reliably broadcasting transactions, and
2) reaching consensus on what transactions to output.

Often those two tasks take the form of sub-protocols, executed
repeatedly. HoneyBadgerBFT [22] and BEAT [15] use either Bracha’s
broadcast [6] or one based on erasure codes [11] to broadcast
transactions, and then optimize a Binary Byzantine Agreement (BBA)
protocol to cast votes and reach agreement. Their networks proceed
in rounds, where in each round n broadcast instances are executed
alongside n BBA instances, the latter of which only conclude when
sufficiently many broadcast instances have been completed to ensure
progress.

Contributions

Although HoneyBadgerBFT and BEAT achieve optimal asymptotic
communication complexity, performance can improve by executing
broadcast and voting simultaneously. To that end, we demonstrate
how the hashgraph protocol, an asynchronous BFT atomic broadcast
protocol, improves throughput and latency.

Like prior work, the hashgraph protocol contains an underlying
reliable broadcast protocol to disseminate transactions. Unlike prior
work, each node in the protocol maintains the communication history
among all nodes in the network — the hashgraph — and this history,
together with the transactions, is propagated throughout the network.

Beyond sending the hashgraph, the protocol does not need further
communication to reach consensus, as the nodes can base their
decisions on the information they have. By optimizing communication
of the hashgraph and removing the need for additional communication
for Byzantine Agreement, the protocol achieves optimal asymptotic
communication complexity and achieves high practical performance.

We describe the hashgraph protocol and illustrate its performance
through an extensive empirical study. We evaluate hashgraph under
the same settings as HoneyBadgerBFT by Miller et al. [22] and BEAT
by Duan et al. [15], demonstrating that hashgraph performs as well
as the state-of-the-art, and in some instances improves either latency
or throughput by an order of magnitude. We also test hashgraph in
high performance settings, running tests covering 4 to 128 nodes

c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

distributed over 1, 2, and 8 regions. For example, hashgraph achieves
20,000 transactions per second with 3.5 sec latency running over 32
nodes spread across 8 regions.

We only state the formal security results; the proofs are contained in
the technical report [4]. Furthermore, the proofs have been formalized
and verified by computer using the Coq proof assistant system [27].1

II. RELATED WORK

We focus on describing related work within the context of
asynchronous BFT protocols. More comprehensive overviews can
be found in one of the many surveys, such as [14].

BFT consensus protocols have been designed under a wide range
of network synchrony assumptions. Synchronous networks guarantee
that messages are delivered within some fixed amount of time ∆.
Asynchronous networks have unbounded message delays. Many well-
known BFT protocols, such as PBFT [13] and Tendermint [7], assume
that networks are partially synchronous [16], where networks behave
asynchronously for some time, but eventually become synchronous.

By the FLP theorem [17], no deterministic Byzantine system can
be asynchronous, with unbounded message delays, and still guarantee
consensus. It is possible for a nondeterministic system to achieve
consensus with probability one. Ben-Or [5] introduces a local coin
mechanism, where nodes use local randomness to randomize the
protocol. Rabin [25] uses a shared coin (or common coin) to ensure
all nodes use the same randomness. Local coin algorithms typically
terminate in an expected exponential number of communication steps.
While shared coin algorithms can terminate in an expected constant
number of steps [9], but there is no limit on how long each step can
take. Hashgraph can use either the local or shared coin mechanisms.

A crucial component to many consensus protocols is reliable
broadcast. Examples include Bracha’s protocol [6] and Cachin and
Tessaro’s [11], both of which operate in ABFT settings. Protocols
have been designed to achieve consensus on different types of inputs.
Correia et al. [14] list some types, including binary, multi-valued, and
vector agreement protocols, none of which output an order.

Atomic broadcast protocols guarantee agreement on a sequence of
requests. Atomic broadcast is also known as total order, or simply
consensus [12], and can be used to achieve state machine replication,
and ledger consensus [18]. Most atomic broadcast protocols use other
types of consensus protocols as building blocks; for example, Cachin
et al. [8], [10], Miller et al. [22], and RITAS [23] all use variants of
binary agreement and reliable broadcast.

Moser and Melliar-Smith [24] propose voting algorithms which can
be run on a communication history to achieve BFT atomic broadcast,
yet their algorithms only work in a weakly asynchronous network,
where assumptions are made on the distribution of messages sent by
the network and the attacker does not have full control. In contrast,
the hashgraph protocol does not make any such assumption.

Prior proposals for asynchronous BFT atomic broadcast include
those by Cachin et al. [8], [10], which do not achieve optimal
communication complexity, and those by Kursawe and Shoup [19]
and Ramasamy and Cachin [26], which do not communicate optimally
when the network is not honest. There are few ABFT protocols other
than hashgraph which achieve optimal communication complexity;
HoneyBadgerBFT and BEAT are two examples. Recently, Lasy [21]
studied variants of the hashgraph protocol.

1The Coq source code can be found at the following address: https://swirlds.
com/downloads/hashgraph-coq.zip.

III. SYSTEM AND THREAT MODEL

Adversaries are computationally bounded, and cannot break the
digital signature schemes and cryptographic hash functions used.
Furthermore, each node has a key pair for digital signatures, and all
nodes know the set of nodes and the public key for each node.

Throughout the paper, n denotes the number of nodes in the protocol.
Out of the n nodes, we assume that more than 2n/3 are honest, so
fewer than n/3 are not honest2. The malicious nodes may collude,
and we assume without loss of generality that they are coordinated
by a single adversary.

For any two honest nodes A and B, A will eventually try to
sync with B, and if A repeatedly tries to send B messages, A will
eventually succeed. No other assumptions are made about network
reliability, network speed, or timeout periods. Specifically, adversaries
may delete and delay messages arbitrarily, subject to the constraint
that a message between honest nodes that is sent repeatedly must
eventually get through.

Following prior work [15], [22], we model how the protocols
operate in practice where users continuously submit transactions to
one or more nodes by assuming that adversaries give nodes a continual
stream of transactions as inputs. During execution of the protocol,
nodes will continuously output transactions, representing their view
of the consensus order.

We follow the property-based description of atomic broadcast by
Cachin et al. [8], Miller et al. [22], and Duan et al. [15].

Definition 1 (Atomic Broadcast). Atomic broadcast protocols must
satisfy the following properties in the face of an adversary:

Agreement if any honest node outputs a transaction, then every
honest node outputs that transaction.

Total Order for all i > 0, if T is the ith output of an honest node
and T ′ the ith output of another honest node, then T = T ′.

Liveness if a transaction is input to an honest node, then it is
eventually output by every honest node.

IV. THE HASHGRAPH PROTOCOL

The hashgraph consensus protocol is given by Algorithms 1, 2, 3,
and 4. As mentioned in the introduction, a proof of the following
theorem is provided in the technical report [4].

Theorem 1 (Asynchronous Byzantine Fault Tolerance Theorem).
Each transaction submitted to honest nodes will eventually be assigned
the same consensus position in the total order of events by each honest
node, with probability 1, satisfying agreement, liveness, and total order.

Fundamental to the operation of the hashgraph protocol is how it
encodes and distributes the communication history — the hashgraph —
among all the nodes, so that each node has a local copy. Section IV-A
discusses how the hashgraph is communicated, and the subsequent
subsections describe how the hashgraph is used to vote and achieve
consensus without further communication.

A. Gossip About Gossip: Communicating the Hashgraph

The hashgraph protocol uses gossip to communicate, as described
in Algorithm 1. A node, Alice, chooses another node at random, say
Bob, and then Alice sends Bob what she knows that he does not
know, and vice versa. Alice repeats with a different random node, as
do all other nodes. Information spreads through the network to every
node.

2In a proof-of-stake system, nodes have different weights in the voting called
stake, and n represents the total amount of stake.

Algorithm 1: Main procedure of the hashgraph protocol.

while True do
select a node at random
sync all events with that node
create a new event
divideRounds
decideFame
findOrder

The communication is stored in the hashgraph data structure
illustrated in Figure 1. Nodes create events when they receive gossip
syncs from others. An event is a tuple consisting of the hashes of
two parent events, a list of transactions, a timestamp, and a signature
for the rest of the tuple.

The tuples contains the timestamp of when it was created. The
algorithm would work is this were removed, and a zero were used for
every timestamp. However, the use of timestamps allows us to generate
a consensus timestamp on every transaction which is important for
practical applications.

If an event x created by node A contains a parent hash pointing
to an event z created by A as well, we call z a self -parent of x.
In Figure 1 A2 is a self-parent of A3, and B3 is a parent of A3.
An event x is an ancestor of event y if x is y, or a parent of an
ancestor of y. It is a self-ancestor of y if x is y, or a self-parent
of a self-ancestor of y. We will also use the complementary terms
descendant and self-descendant.

Nodes only accept events that have a valid signature and contain
valid hashes referring to events they already have. For example in
Figure 1, Carol receives A3 and can use the event’s signature to verify
that A3 was created by Alice when Bob synced with her. Carol can
request the ancestors3 of A3, which she verifies using the hashes
contained in the event.

If two nodes both have the same event, then they can verifiably
recover its ancestors, and will agree on the edges in the subgraph of
those ancestors. Therefore, any two nodes have consistent hashgraphs:
for any event x contained in hashgraphs A and B, both A and B
contain the same set of ancestors for x, with the same parent edges
between those ancestors.

B. Deriving Consistent Output From A Hashgraph

If all nodes have the same hashgraph, then they can calculate an
ordering of events using a deterministic function of that hashgraph and
reach consensus without further communication. However, different
nodes may not have the same hashgraph; they will typically have
the same older events, but differ in which recent ones they have.
Therefore the algorithm must be designed so that a conclusion based
on a deterministic function of the hashgraph at one moment will not
change as the hashgraph grows.

For example, a node might have all the events in Figure 1 at one
moment, and conclude that D1 is an ancestor of C6. Other nodes
might grow this hashgraph differently: at one moment Bob might
have D1 and not C6, and not yet have concluded whether D1 is an
ancestor of C6. But when Bob accepts C6 via a sync, Bob must
already have received all the ancestors of C6 so he will see the same
paths between C6 and D1 and conclude that D1 is an ancestor of C6.

Thus, ancestry is an example of a deterministic function of a
hashgraph that at any given moment either gives no conclusion at

3The ancestors of A3 are A2, A1, B3, B2, B1, C3, C2, C1, D1, E2, and E1.

Alice Bob Carol Dave Ed

E1

E2

D1

D2

C1

C2

C3

C4

C5

C6

B1

B2

B3

A1

A2

A3

Fig. 1: The hashgraph data structure. Older events are located towards
the bottom of the graph. C6 can strongly see D1 via A3, B3, C4, and
D2.

all, or it makes a conclusion that will never change, and all nodes
eventually come to that same conclusion.

C. Using Strongly Seeing To Handle Forks

Nodes might maliciously deviate from the protocol. For example, a
node Alice could create two events y and z with the same self-parent
x, that is, a fork: events y, z with the same creator, where neither is an
ancestor of the other. If Alice gossips y to Bob and z to Carol, then
Bob’s hashgraph could contain y and not z, while Carol’s hashgraph
could have z and not y. To detect and prevent such forks, Bob and
Carol need to know what other nodes’ view is of the hashgraph.

Core to virtual voting are the concepts of an event x seeing
or strongly seeing an event y. Seeing enhances the relationship
“descendant of” by excluding forks: the event x sees y if x is a
descendant of y, and y’s ancestors do not include a fork by y’s
creator. Strongly seeing enhances seeing by having many other nodes
“vouch for” y’s lack of forks: the event x strongly sees y if x can see
more than 2n/3 events by different nodes, each of which can see y.

Strongly seeing is illustrated in Figure 1. Four events are needed
for strongly seeing, because this example has n = 5 nodes, and the
least integer greater than 2n/3 is four. C6 can see D1 through four
events by different nodes — A3, B3, C4, and D2. Alternatively, C6
could see through C6 and D1 because an event always sees itself.

Strongly seeing ensures that even if an attacker tries to cheat by
forking, they cannot make different nodes strongly see different events.
If y and z are on different branches of a fork, then x can strongly see
either y or z, but not both. This is because the set of events through
which x sees y and the set of events through which x sees z overlap
in more than n/3 nodes. Since fewer than n/3 nodes are malicious,
at least one node in the overlap must be honest, and that node cannot
see both y and z since they are on a fork.

Therefore, strongly seeing is an example of a conclusion that
is a deterministic function of a hashgraph that is guaranteed to
eventually be reached by all nodes no matter what order they receive
the hashgraph. All components of the hashgraph consensus algorithm
have mathematical proofs that they have this consistency property.

D. Deciding Order

Virtual voting relies on strongly seeing to ensure nodes collect
consistent votes. In Figure 1, if one node concludes that C6 collected
a given vote from Dave by looking at event D1, then all other nodes
are also guaranteed to conclude that C6 received the vote from D1
and not from a fork of D1.

To determine event ordering, each node performs the following
operations on its own hashgraph as follows.

1) divideRounds (Algorithm 2): The hashgraph is divided into
rounds, where an event is placed into a new round when it strongly
sees more than 2n/3 events in the prior round. Furthermore, rather
than voting on all events, voting focuses on witnesses: the first event
created by a node in a round.

2) decideFame (Algorithm 3): The voting protocol runs an
election for each witness to determine if it is famous, meaning that
event was received by many nodes by the start of the next round; we
call the famous witness unique if there are no other famous witnesses
from the same creator. For a witness x in round r, each witness in
round r + 1 will vote that x is famous if it can see x.

If more than 2n/3 witnesses agree on whether x is famous then
the community has decided, and the election is over. If the vote is
more balanced, then it continues for as many rounds as necessary,
with each witness in a normal round voting according to the majority
of the votes from the witnesses that it can strongly see in the previous
round.

To defend against attackers who can control the internet, there are
periodic coin rounds where witnesses can vote pseudorandomly. This
means that even if an attacker can control all the messages going
over the internet to keep the votes carefully split, there is still a
chance that the community will randomly cross the 2n/3 threshold,
and so agreement is eventually reached, with probability one. It is
unlikely that a coin round will ever occur in a practical implementation,
because convergence is fast when the honest nodes are allowed to
communicate freely, even if some of them are shut down by attackers.
But coin rounds are included here for theoretical completeness.

3) findOrder (Algorithm 4): Once consensus has been reached
on whether each witness in a given round is famous, findOrder
determines a consensus timestamp and a consensus total order on
older events.

First, the round received of event x is calculated: the first round r
in which all the unique famous witnesses are descendants of x, and
all witnesses’ fame is decided for rounds less than or equal to r.

Then, the received time is calculated. Say x has a received round
of r, and Alice created a unique famous witness y in round r. The
algorithm finds the earliest self-ancestor z of y that had learned of
x. Then the timestamp that Alice assigns z is when Alice claims to
have first learned of x. The received time for x is the median of all
such timestamps, for all the creators of the unique famous witnesses
in round r.

Then the consensus order is calculated. All events are sorted by
their received round. If two events have the same received round, then
they are sorted by their received time. If there are still ties, they are
broken by any arbitrary deterministic method. In Algorithm 4, the
algorithm simply sorts by signature, after the signature is whitened
by XORing with the signatures of all the unique famous witnesses in
the received round.

V. PERFORMANCE

We illustrate that the hashgraph consensus algorithm performs
competitively with state-of-the-art consensus protocols. Hashgraph

Algorithm 2: The divideRounds procedure.

foreach event x do
if x has parents then

r ← max round of parents of x
else

r ← 1

if x strongly sees > 2n/3 round r witnesses then
x.round ← r + 1

else
x.round ← r

x.witness ← (x has no self parent) or (x.round >
x.selfParent.round)

Algorithm 3: The decideFrame procedure.

foreach event x in order from earlier rounds to later do
x.famous ← UNDECIDED
foreach event y in order from earlier rounds to later do

if x.witness and y.witness and y.round > x.round
then

d← y.round− x.round
/* first round of the election */
if d = 1 then

y.vote ← can y see x?
else

s← set of witnesses in round y.round− 1 that
y strongly sees
v ← majority vote in s (is TRUE for a tie)
t ← number of events in s with a vote of v
if d mod c > 0 then // normal round

if t > 2 ∗ n/3 then
x.famous← v
y.vote← v
break out of the y loop

else
y.vote← v

else // coin round
if t > 2 ∗ n/3 then

y.vote← v

else // else flip a coin
y.vote← (middle bit of y.signature)

can reach peak throughputs of hundreds of thousands of transactions
per sec (tps), while maintaining low latency to reach confirmation.

A. Implementation Details

The hashgraph consensus algorithm uses two cryptographic prim-
itives: digital signatures and hash functions. In the implementation
tested here, which uses the Java standard crypto library, the digital
signature is RSA with 3072 bit keys and the hash function is SHA-
384. All communication is done over TLS 1.2 with RSA 3072, Diffie
Hellman with ephemeral keys and AES256-GCM.

This implementation operates assuming the number of malicious
nodes is set to the largest integer smaller than n/3, which is the
recommended way to run the hashgraph protocol. The gossip protocol
requires that nodes randomly sync with each other. Nodes can
perform multiple syncs in parallel. In our implementation, each node

Algorithm 4: The findOrder procedure.

foreach event x do
if there is a round r such that there is no event y in or

before round r that has y.witness = TRUE and
y.famous = UNDECIDED

and x is an ancestor of every round r unique famous
witness

and this is not true of any round earlier than r then
x.roundReceived← r
s← set of events z where z is a self-ancestor of a

round r unique famous witness, and x is an ancestor
of z but not of z’s self-parent

x.consensusTimestamp ← median of the timestamps of
the events in s

/* The whitened signature is the signature
XORed with the signatures of all unique
famous witnesses in the received round.

*/
return list of events x where
x.roundReceived 6= UNDECIDED, sorted by roundReceived,
then ties sorted by consensusTimestamp, then by whitened
signature

performs up to fifteen parallel syncs. Furthermore, the events in the
implementation contain up to 1024 transactions. Both the number
of parallel syncs and transactions per event are chosen to optimize
latency given a desired throughput.

B. Asymptotic Communication Complexity

If the transaction size is B bits, then the hashgraph protocol’s
communication cost to gossip the transaction to all nodes is O(B) per
node. The additional overhead for sending an event will include two
hashes and a time created, so sending that event is O(1) per node. If
only a single transaction were sent to the network, then many empty
events would have to be created and gossiped to reach consensus
on that single transaction. However, hashgraph is designed for high-
throughput settings, where there is a steady stream of transactions
entering the network, and most events contain at least one transaction.
In that case, the amortized communication complexity per transaction
to reach consensus is just O(B) per node. A single event, with just
two hashes and a time, can act as a "vote" in many different consensus
elections simultaneously, because of the virtual voting.

C. Evaluation

We evaluate hashgraph under two setups using Amazon EC2 [3]:
1) one to establish a baseline comparison, by recreating the

conditions of the HoneyBadgerBFT and BEAT experimental
results using t2.medium instances with two virtual CPUs, 4GB
memory, and up to 1 Gbps network performance [2],

2) and to demonstrate high performance, using m4.4xlarge instances
with 16 virtual CPUs, 64 GB memory [2], and up to 2 Gbps
network performance [1].

The instances are distributed evenly across eight regions4.
As in Miller et al. [22] and Duan et al. [15], throughput is measured

in 250 byte tps, and latency in seconds. We compare with Duan et
al.’s BEAT0, BEAT1, and BEAT2 protocols, which achieve general

4The eight regions are US East, US West, Canada, Sao Paulo, Japan,
Australia, South Korea, and Germany.

TABLE I: Hashgraph performance using Amazon t2.medium instances.
Unless specified otherwise, nodes are distributed evenly across eight
regions. HG stands for hashgraph and HB for HoneyBadgerBFT.
Performance figures for HB and BEAT in the first table are from [15],
and for HB in the second table are from [22].

Protocol # nodes tps latency (sec)

HG 4 22,000 7
HB 4 1,500 7
BEAT0 4 2,000 7
BEAT1 4 600 7
BEAT2 4 700 7

tps latency (sec)

nodes HB HG HB HG

32 7,500 7,000 5 5.1
40 10,000 8,000 10 8.4
48 12,000 6,000 48 8.4
56 11,000 6,000 100 10
64 5,000 5,000 200 12.5

104 2,500 2,500 250 25

state machine replication. BEAT3 and BEAT4 are out of scope as
they do not support general state machine replication.

As with prior work, these tests are for achieving consensus on
transaction order and timestamps, and assumes nodes are honest.
They do not include the time to process transactions.

Latency is measured as the average number of seconds from when
a client first submits a transaction to a node until when the node
knows the transaction’s consensus order and timestamp.

Setup 1: Baseline Comparison with t2.medium. We recreate the
experimental settings of Miller et al. [22] and Duan et al. [15]
to compare throughput and latency, including the fact that nodes
are honest. Furthermore, it is important to note that Miller et al.’s
performance figures are for the protocol tuned to a tolerance of up to
n/4 malicious nodes; in contrast, our figures for hashgraph are for
a tolerance up to n/3 malicious nodes. When available, results for
HoneyBadgerBFT (HB) and BEAT are estimated from their respective
papers, in their favor (tps overestimated, latency underestimated).

Duan et al. [15] present performance figures for HoneyBadgerBFT
and BEAT with four nodes all in one region, to simulate a LAN
setting. HoneyBadgerBFT and BEAT achieve throughput of less than
10,000 tps; latency is not given. In our experiments, we find that
hashgraph is able to achieve 27,000 tps with a latency of 0.35 sec,
and 37,000 tps with a latency of 0.5 sec.

Table I gives performance results in settings where nodes are
evenly distributed across regions. In all cases, hashgraph performs
at least as well as HoneyBadgerBFT and BEAT. In some cases,
hashgraph improves by an order of magnitude. For example, with
four nodes across four regions, hashgraph is able to achieve 22,000
tps with latency of 7 sec, while HoneyBadgerBFT and BEAT achieve
at most 2,000 tps. With 64 nodes across eight regions, hashgraph can
achieve the same 5,000 tps as HoneyBadgerBFT, but with only 12.5
sec latency instead of 200 sec latency.

Setup 2: High Performance with m4.4xlarge. Results are given in
Figure 2. Each line is for a different number of nodes, shown to the
right. The horizontal axis is the number of 250-byte transactions per
sec (tps) placed in consensus order. In these experiments, throughput
ranges from about 4,000 tps up to almost 250,000 tps. On most lines,

the second dot from the left is 4,000 tps.
In nearly all experiments, latency was under 20 sec, and various

experiments had latencies down to less than 0.04 sec.
The graphs illustrate tradeoffs between throughput, latency, number

of nodes, and geographic distribution. For 32 nodes running at 20,000
tps, consensus finality is reached in 3.5 sec when the network is
spread across 8 regions. When the network spans two regions, latency
is 1.7 sec, and in a single region, it drops to 0.75 sec.

If latency needs to be kept under 7 seconds, as might be required
for credit cards, while still achieving 50,000 transactions per second,
one can use 32 computers in eight regions, 64 computers in two
regions, or 128 computers in one region.

VI. CONCLUSIONS

As described earlier, hashgraph departs in structure from Honey-
BadgerBFT and BEAT by not using communication to vote, only
to broadcast transactions. Our performance evaluation shows that
hashgraph significantly outperforms both BEAT and HoneyBadger
by an order of magnitude in either latency or throughput, thereby
supporting the claim that hashgraph’s novel structure leads to concrete
performance improvements.

Beyond a comparison with HoneyBadgerBFT and BEAT, we also
tested hashgraph’s capability for high performance. Based on our
study, we conclude that hashgraph can achieve sufficient performance
to support demanding practical applications, while still guaranteeing
security in an ABFT setting.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their comments
and suggestions to improve the paper. We would like to thank
Jeffrey Tang and Mehernosh (Nosh) Mody for their help in getting
performance figures for hashgraph. We would also like to thank Mance
Harmon for the many discussions about hashgraph.

REFERENCES

[1] EC2 network performance demystified: m3 and m4. https://cloudonaut.io/
ec2-network-performance-demystified-m3-m4/. Accessed: 2020-03-05.

[2] General Purpose Instances. https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/general-purpose-instances.html. Accessed: 2020-03-05.

[3] What Is Amazon EC2? https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/concepts.html. Accessed: 2020-03-05.

[4] L. Baird. Hashgraph consensus: fair, fast, byzantine fault tolerance.
Swirlds Tech Report, Tech. Rep., 2016.

[5] M. Ben-Or. Another advantage of free choice: Completely asynchronous
agreement protocols (extended abstract). In R. L. Probert, N. A. Lynch,
and N. Santoro, editors, Proceedings of the Second Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, Montreal,
Quebec, Canada, August 17-19, 1983, pages 27–30. ACM, 1983.

[6] G. Bracha. An asynchronou [(n-1)/3]-resilient consensus protocol. In
T. Kameda, J. Misra, J. G. Peters, and N. Santoro, editors, Proceedings
of the Third Annual ACM Symposium on Principles of Distributed
Computing, Vancouver, B. C., Canada, August 27-29, 1984, pages 154–
162. ACM, 1984.

[7] E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on BFT
consensus. CoRR, abs/1807.04938, 2018.

[8] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient
asynchronous broadcast protocols. In J. Kilian, editor, Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, volume 2139 of Lecture Notes in Computer Science, pages
524–541. Springer, 2001.

[9] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantipole:
practical asynchronous byzantine agreement using cryptography (extended
abstract). In G. Neiger, editor, Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed Computing, July 16-19,
2000, Portland, Oregon, USA., pages 123–132. ACM, 2000.

0 0.5 1 1.5 2

·105

0.05

0.1

0.5

1

5

10

20

30

8

16

32

64

2

4

8

16

32

64

128

2 nodes

4

8

16

32

64

128

Throughput (tps)

L
at

en
cy

(s
ec

on
ds

)

8 regions
2 regions
1 region

Fig. 2: Hashgraph latency versus throughput, where throughput is
measured in 250-byte transactions per second.

[10] C. Cachin and J. A. Poritz. Secure intrusion-tolerant replication on the
internet. In 2002 International Conference on Dependable Systems
and Networks (DSN 2002), 23-26 June 2002, Bethesda, MD, USA,
Proceedings, pages 167–176. IEEE Computer Society, 2002.

[11] C. Cachin and S. Tessaro. Asynchronous verifiable information dispersal.
In P. Fraigniaud, editor, Distributed Computing, 19th International
Conference, DISC 2005, Cracow, Poland, September 26-29, 2005,
Proceedings, volume 3724 of Lecture Notes in Computer Science, pages
503–504. Springer, 2005.

[12] C. Cachin and M. Vukolic. Blockchain consensus protocols in the wild.
CoRR, abs/1707.01873, 2017.

[13] M. Castro and B. Liskov. Practical byzantine fault tolerance. In M. I.
Seltzer and P. J. Leach, editors, Proceedings of the Third USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
New Orleans, Louisiana, USA, February 22-25, 1999, pages 173–186.
USENIX Association, 1999.

[14] M. Correia, G. S. Veronese, N. F. Neves, and P. Veríssimo. Byzantine
consensus in asynchronous message-passing systems: a survey. IJCCBS,
2(2):141–161, 2011.

[15] S. Duan, M. K. Reiter, and H. Zhang. BEAT: asynchronous BFT made
practical. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors,
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018, pages 2028–2041. ACM, 2018.

[16] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, Apr. 1988.

[17] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382,
Apr. 1985.

[18] J. A. Garay and A. Kiayias. Sok: A consensus taxonomy in the blockchain
era. IACR Cryptology ePrint Archive, 2018:754, 2018.

[19] K. Kursawe and V. Shoup. Optimistic asynchronous atomic broadcast.
In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung,
editors, Automata, Languages and Programming, 32nd International Col-
loquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings,
volume 3580 of Lecture Notes in Computer Science, pages 204–215.
Springer, 2005.

[20] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[21] T. Lasy. From hashgraph to a family of atomic broadcast algorithms,
2019.

[22] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger
of BFT protocols. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C.
Myers, and S. Halevi, editors, Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 31–42. ACM, 2016.

[23] H. Moniz, N. F. Neves, M. Correia, and P. Veríssimo. RITAS: services for
randomized intrusion tolerance. IEEE Trans. Dependable Sec. Comput.,
8(1):122–136, 2011.

[24] L. E. Moser and P. M. Melliar-Smith. Byzantine-resistant total ordering
algorithms. Inf. Comput., 150(1):75–111, 1999.

[25] M. O. Rabin. Randomized byzantine generals. In Proceedings of the
24th Annual Symposium on Foundations of Computer Science, SFCS
’83, page 403–409, USA, 1983. IEEE Computer Society.

[26] H. V. Ramasamy and C. Cachin. Parsimonious asynchronous byzantine-
fault-tolerant atomic broadcast. In J. H. Anderson, G. Prencipe,
and R. Wattenhofer, editors, Principles of Distributed Systems, 9th
International Conference, OPODIS 2005, Pisa, Italy, December 12-
14, 2005, Revised Selected Papers, volume 3974 of Lecture Notes in
Computer Science, pages 88–102. Springer, 2005.

[27] T. C. D. Team. The coq proof assistant, version 8.7.0, Oct. 2017.

