
1HEDERA CONSENSUS SERVICEHEDERA 2019

Hedera Consensus Service

1

Dr. Leemon Baird
Co-Founder & Chief Scientist
Hedera Hashgraph

Bryan Gross
Principal Product Manager
IBM

Authored by:

Donald Thibeau
Principal Product Manager
Hedera Hashgraph

2HEDERA CONSENSUS SERVICE

Table of Contents

ABSTRACT		 3

INTRODUCTION		 4

	 Second Value	 5

HEDERA GOVERNANCE AND THE PATH TO DECENTRALIZATION	 6

	 Decentralization	 6	
	 Performance	 6	
	 Finality	 7

THE FAIR ORDER OF TRANSACTIONS	 8

	 Hedera’s Other Services	 8

	 Extending to the Consensus Service	 9

ARCHITECTURE		 11

	 Hedera Consensus Service Architecture	 11

	 Figure 1A: Public Network	 11

	 Figure 1B: Transaction Ordering Process	 12

	 Hyperledger Fabric Interoperability	 13

	 Figure 1C: Hyperledger Fabric/ Hedera Consensus Service Interoperability	 14

USE CASE		 16	

	 Private Network Token Issuance	 16

	 Ordering for a Stock Market	 17

ADDITIONAL OPPORTUNITIES	 19	

CONCLUSION		 20	

	

3HEDERA CONSENSUS SERVICE

Abstract

The Consensus Service proof-of-concept use case is providing custom Hyperledger Fabric networks
with decentralized consensus on the validity and order of blockchain transactions without the need
to configure a RAFT1 or Kafka2 ordering service. Additional use cases include, but are not limited to,
financial markets, matching engines (like those used in Uber or AirBnb), or supply chain negotiations
(e.g., several competing factories bidding on parts from several competing parts suppliers).

The Hedera Consensus Service synchronizes the fair order of messages for distributed
systems without relying on a centralized clock.

1 “Configuring and Operating a RAFT Ordering Service,”
	 https://hyperledger-fabric.readthedocs.io/en/release-1.4/raft_configuration.html
2 “Bringing up a Kafka Ordering Service,”
 https://hyperledger-fabric.readthedocs.io/en/release-1.4/kafka.html

ON A DISTRIBUTED LEDGER, THE ENTIRE

NETWORK RECORDS AND VALIDATES

EACH TRANSACTION.

4HEDERA CONSENSUS SERVICE

Introduction

The Hedera Consensus Service is the first Distributed Ledger Technology (DLT) network service to
provide solely the validity and order of events and transparency into the history of events over time
without requiring a persistent history of transactions. As a result, the Hedera Consensus Service
provides these benefits of a fast, fair, and secure consensus at a lower cost than any other public
distributed ledger network.

Whether in financial services, IoT, or supply chain - the timing and order of events dictates everything
from financial transactions to meaningful asset provenance. The applications must execute logic
based on events which occur at a specific time, in a specific order. In many cases the users of
these applications need to look back in time to the history of that order for everything from audit
to reconciliation.

Today, these applications rely on moderation, matching, and ordering performed by single entities.
This makes them prone to network outage3, at risk of collusion by a small number of parties4, and
subject to the cost model of centralized infrastructure providers5. Even private distributed ledger
networks rely on nodes operated by one or few parties to provide consensus to the rest of the
network6. Each approach poses economic risk due to cost and operational risk due to unintentional
outage or intentional manipulation of a service.

In the distributed ledger space, protocols aim to solve this problem through the provision
of two features:

	 1	 Decentralized consensus on the validity and order of events.
	 2	 Transparency into the history of events over time.

The first value relies on the existence of nodes to come to agreement on the time an event occurred,
ultimately producing a consensus order for events over time. Distributed ledgers such as R3’s Corda,
Hyperledger Fabric, or enterprise version of Ethereum either deploy known and trusted nodes
operated by institutions, trust a single party to provide the order, or rely on slow and expensive public
ledgers like Bitcoin or Ethereum to select a block producer through proof of work7. Applications
can be forced to wait minutes or even hours for confirmation on finality of a transaction. There
is a market need for distributed and fast consensus without the need to centralize the consensus
process.

3Gps Error Caused ‘12 Hours Of Problems’ For Companies
	 Chris Baraniuk - https://www.bbc.com/news/technology-35491962
4Corrupt Governance? What We Know About Recent Eos Scandal
	 Stephen O’Neal - https://cointelegraph.com/news/corrupt-governance-what-we-know-about-recent-eos-scandal
5Cloud Pub/sub | Google Cloud
	 https://cloud.google.com/pubsub/
6The Ordering Service¶
	 https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html and Notaries¶
7“Recent studies hint that the performance of PoW based blockchains cannot be enhanced
	 without impacting their security” - https://eprint.iacr.org/2016/555.pdf

5HEDERA CONSENSUS SERVICE

 8Bitcoin Blockchain Size 2010-2019 | Statistic
	 https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/

The second value is the ability of any individual or entity to independently verify whether and when
an event occurred. This is most frequently used to track account balances of tokens, or to verify the
provenance of an asset. Traditional blockchains rely on storage of all events across all members of the
network. This model allows for simple querying of account balances but limits performance to 10-20
tps and means the ledger will continue to grow (bitcoin alone is over 200 GB as of the writing of
this paper).8

Hedera provides a unique solution to deliver optimized performance of decentralized consensus
without the need to persist a history of transactions over time through the provision of the Hedera
Consensus Service. The Hedera Consensus Service will use the Hedera public network and underlying
hashgraph consensus algorithm for fast, fair, and secure consensus while offloading the validation
and storage requirements for distinct applications to computers using the Mirror Network.

6HEDERA CONSENSUS SERVICE

Hedera Governance

and the Path to Decentralization
The Hedera public network is built from the ground up to deliver decentralized services at a scale
needed for enterprise and consumer applications. This includes full decentralization of network
operations, high performance, and guaranteed finality.

Decentralization
The Hedera public network will be governed by a Council of 39 term-limited, multi-industry and multi-
geo large enterprises who ensure the stability and growth of the network. They act as the initial node
operators before node operation becomes public long term. This ensures that the network itself and
services it provides are not prone to collusion or manipulation at the desire of a small group of entities
or miners. This acts as a multi-cloud/multi-data center service with inherent disaster recovery
and high availability that can be used by any application. The Hedera Consensus Service provides
transaction ordering on a decentralized network rather than relying on a single cloud provider or
small group of private node operators.

Performance
Throughput continues to bottleneck the majority of decentralized public networks today. Hashgraph
enables faster consensus with 100% finality and without the need to elect leaders, trust a small
subset of nodes, or in any way compromise the security of the network. The Hedera Consensus
Service will extend this benefit for any transaction type submitted by an application. Consensus
occurs in a matter of seconds while processing tens to hundreds of thousands of transactions per
second. This level of performance is required for any scaled consumer or enterprise application.

Finality

D E C E N T R A L I Z AT I O N P E R F O R M A N C E F I N A L I T Y

7HEDERA CONSENSUS SERVICE

Finally, the order that is created by the mainnet is final and verifiable. Consensus timestamps on the
Hedera mainnet are 100% final once they are created due to the Asynchronous Byzantine fault
Tolerance (ABFT) nature of the hashgraph consensus algorithm. This means that the timestamp of a
given transaction is final and cannot change. Any client application can query the network for the
record (created automatically by the nodes to capture key information about the transaction being
added to consensus) and optionally ask for a corresponding state proof (a cryptographically secure and
persistent assertion from
the network as to the accuracy of the record) to confirm that timestamp. Additionally, Consensus
Service transactions will be stored on mirror nodes running additional software. Users can run mirror
nodes themselves, query a mirror node for state proofs, or validate records between multiple mirror
nodes to verify the complete order without needing to trust a single node operator.

8HEDERA CONSENSUS SERVICE

The Fair Order of Transactions
Hashgraph’s primary function is to calculate a fair order of transactions in a decentralized
environment. One of the major differentiators is the degree to which individuals or small groups are
prevented from manipulating the order, ensuring fairness.9

The Hedera public ledger uses the hashgraph consensus algorithm and its HBAR cryptocurrency to
initially provide three services: Cryptocurrency, Smart Contract, and File Service. Hashgraph uses
gossip about gossip and virtual voting in order to bring the network to consensus on the timestamp
of any event with efficiency of bandwidth usage without centralizing around any entity or group of
entities. Hbars are the network coin, which enable any holder of the coin to pay for utility provided by
the network, and also ensures security of the network through the process of staking (tying influence
within virtual voting to the amount of coin held).

Gossip between the Hedera nodes is the same speed regardless of which node submitted the
transaction and cannot be increased by paying more for a given transaction. This differs from other
public network models which allow applications to pay more for their transactions to be processed
first. Similarly, because there is no concept of leaders in the consensus, no small subset of nodes can
collude to unduly influence the consensus order in their own favor.

Transactions are propagated to the network and come to final consensus in a matter of seconds. If
an application is worried about a single node holding back from sending the transaction to the rest of
the network then they can submit to multiple nodes. In this scenario then only the first transaction to
reach consensus would be kept and the others would be ignored.

Hedera’s Other Services
Hedera built three initial services to expose the value of decentralization to any application builder:

	 1	 Cryptocurrency: access a low cost and fast method of transferring value between 		
		 accounts without relying on intermediaries. The Cryptocurrency Service can be used 	
		 for payment applications, data purchases, and many other use cases relying on
		 fast value transfer.

	 2	 Smart Contracts: execute code deterministically without needing to trust an 		
		 application operator. Build fair markets, issue tokens, and program business logic in 	
		 Solidity and deploy it on Hedera to benefit from trusted security and fair ordering.

	 3	 File Service: store data across the network for any node or user to access or
		 store obfuscated data to benefit from a consensus timestamp of the state of data 	
		 at a point in time. Create decentralized registries, records, and other public data
		 on the File Service.

 9https://www.hedera.com/whitepaper

9HEDERA CONSENSUS SERVICE

These services enable large enterprises, independent developers, and consumers to build or use
applications across industries and geographies. They are consumable through SDKs in common
programming languages and are intended to support applications of any type.

Extending to the Consensus Service

The Consensus Service relies on another feature to propagate the full history of transactions and
their results to many participants: the mirror network. Messages ordered by the Consensus Service
will be received by the mirror nodes. Developers can choose to implement additional software on
each mirror node. A mirror node could store all the messages for certain topics (identifiers used to
associate a message with a specific application or network). It could store all messages (strings of
bytes representing a given transaction). Or it could even store the records of all transactions that
reached consensus on the ledger. If everything is stored, it can form something that resembles a
traditional blockchain, even though the Hedera ledger never keeps that history.

The Hedera mirror network (mirrornet) is a parallel network dedicated to propagating the state of
the Hedera main network (mainnet). This propagation is accomplished without adding unnecessary
strain to the mainnet; and while anyone will be able to host a mainnet node in the future, mirror nodes
allow businesses to extend the functionality of Hedera without a serious impact on the mainnet.

The mirrornet is a set of nodes that maintain all of the same requirements and most of the
functionality of the mainnet. The primary difference in functionality is that mirror nodes do not
participate in consensus. They receive information from the mainnet, but do not send information
to it. Mirror nodes continue to gossip with other mirror nodes, and will calculate consensus and
verify signatures, but they have no effect on the mainnet, therefore they have no ability to submit
transactions for consensus and no voting power. Mirror nodes can be thought of as read-only nodes in
that transactions cannot be submitted to a mirror node via the Hedera API. Mirror nodes operators

Hedera extends these network services with a fourth service, which brings the fairness
provided by the hashgraph consensus algorithm to the Hedera Consensus Service.
This service receives messages, and assigns them consensus timestamps and a
consensus order.

MIRROR
NODES

101010
010101
101010

101010
010101
101010

101010
010101
101010

10HEDERA CONSENSUS SERVICE

are free to develop additional APIs for providing new kinds of services that they develop. The beta
version of the mirror nodes was completed in May 2019, and has greater latency (e.g., a minute), but
the full mirror nodes will have a latency of seconds.

Mirror nodes operated by individuals or private networks leveraging the Consensus Service will be
able to filter and receive events and records for transactions which have a specified topic. They will
then be able to store the full history of events relevant to their application.

11HEDERA CONSENSUS SERVICE

HEDERA NETWORK

HEDERA HASHGRAPH

CRYPTOCURRENCY
SERVICE

SMART CONTRACT
SERVICE

FILE
SERVICE

CONSENSUS
SERVICE

HEDERA SDK

Architecture
This section will describe the architecture of the Consensus Service on the Hedera public network
along with an overview of how the Consensus Service can enable interoperability with and between
any Hyperledger Fabric based network.

Hedera Consensus Service Architecture
The Hedera Consensus Service is the fourth core service provided by Hedera. Like the other services,
the Consensus Service will be exposed via a diverse number of SDKs in common programming
languages, as well as the Hedera API (HAPI) using protobufs. This allows applications to access the
network services using both the SDK abstractions as well as the lower level APIs.

The client application would submit a message (a string of bytes) and give it a topic (an ID number).
The message would include the relevant details of a transaction such as bid on a financial asset, or
even just the hash of data stored elsewhere. The topic will allow messages with the same topic to be
classified together. The client application would pay a transaction fee, denominated in hbars, for the
use of the Consensus Service.

The Hedera public ledger will return a record which says that consensus has been reached, the
timestamp it was reached, the sequence number of the event for the given topic. The sequence
number will allow the application to interpret the order of the message relative to the other messages
with the same topic. The result will also include a running hash of all the messages so far for that topic.
A running hash is a few bytes that act as a fingerprint of all the messages so far for that topic.

Topics are created by executing a transaction defined by the HAPI which allows the topic to be
created, the keys of the owner to be specified, the keys of who is allowed to post to or delete the topic
to be specified, and which will return the ID number of the topic.

Figure 1A: Public Network

12HEDERA CONSENSUS SERVICE

In practice we expect the Consensus Service to be used by a group of mirror node operators and
users who are leveraging an application which handles private or proprietary data, but benefits from
the fast ordering, decentralized trust, and immutable record of a public ordering service.

To set up the network, the organizations would configure one or multiple mirror nodes, program
client applications on them, and configure one or multiple keys that allow those who have the keys
to see what the group is doing. The group would also define a topic which they can use to identify
transactions relevant to their group. This topic will be attached to messages which the client
application will send to the Hedera public network.

Figure 1B: Transaction Ordering Process

The figure above outlines the process for sending a transaction to the Hedera Consensus Service.
The client application will create a transaction using the Hedera SDK which allows it to include a
message and topic. The message could describe some action, or contain just a hash, or be any other
byte array relevant to the client application. Each application will need to use one or more topics.

Like the other Hedera network services, the transaction can be sent to a single or multiple mainnet
nodes. The mainnet node will check that the transaction has the necessary information (signature(s),
payment, inputs) and return an acknowledgment to the client application that the transaction has
met precheck. A sample transaction is shown below:

CLIENT
APPLICATION

SDK
INTERFACE

MAINNET
NODE

MIRROR
NODE

Client application
submits transaction
with a message
and topic.

1
Hedera node
returns pre-check
con irmation.

2

Hedera node gossips
event to network.3

Hedera network determines
order and consensus timestamp of event.4

Hedera node generates transaction record with
payload, topic, order and consensus timestamp.5

Mirror node listens for
records of a given topic.6

Mirror node parses
transaction details
to create order.

7

Client application
communicates with mirror
node to execute logic based
on transaction order.

8

13HEDERA CONSENSUS SERVICE

The mainnet node will gossip the event to the rest of the network, allowing the network to determine
a consensus timestamp for the event using the hashgraph consensus algorithm. A record will then be
generated which includes the message, the topic, the order, the running hash, and the consensus timestamp.
The consensus timestamp is 100% final once reached, and typically is reached in a matter of seconds.

The mirror node receives all information from the mainnet, and therefore learns of the transaction
and its consensus order, with consensus timestamps, tied together with a running hash. It can also
construct state proofs that can prove to a third party the exact list of messages received for the
topic, and in what order, and with what timestamps.

The mirror node runs software that implements the application’s business logic. It would take the
results of an ordered transaction and return results to the application such as matching bids and
asks in a stock market, transferring security tokens between account holders, or updating the status
of a good for a shipping and logistics provider.

This feature would have a performance and cost profile similar to using the Cryptocurrency Service
(<$0.001 per transaction). Finality would be achieved within a matter of seconds.

The application benefits from the distribution of both the mirror network and Hedera public network.
Any user can get records from one or multiple mirror nodes and check state proofs10 to confirm that
the mainnet agreed upon that consensus timestamp and order of a transaction. This enables a real-
time audit of the mirror node to verify it did the right thing. Any user can also run a mirror node and
would immediately know the truth about ordering and correct conclusions.

Hyperledger Fabric Interoperability
The Hedera Consensus Service proof-of-concept use case is providing custom Hyperledger Fabric
networks with decentralized consensus on the validity and order of blockchain transactions without
the need to configure a RAFT11 or Kafka12 ordering service.

Hyperledger Fabric features a kind of a node called an orderer (it’s also known as an “ordering
node”) that does this transaction ordering, which along with other nodes forms an ordering service.
Because Fabric’s design relies on deterministic consensus algorithms, any block a peer validates as
generated by the ordering service is guaranteed to be final and correct.13 In addition to promoting
finality, separating the endorsement of chaincode execution (which happens at the peers) from
ordering gives Fabric advantages in performance and scalability, eliminating bottlenecks which can
occur when execution and ordering are performed by the same nodes.

New as of Hyperledger Fabric v1.4.1, Raft is a crash fault tolerant (CFT) ordering service based on an
implementation of Raft protocol in etcd. Raft follows a “leader and follower” model, where a leader
node is elected (per channel) and its decisions are replicated by the followers.14

10State Proof: A cryptographically secure, portable assertion from a majority of the network 		
	 nodes as to some fact about a transaction entered into consensus or the state that resulted
11Configuring and Operating a Raft Ordering Service¶
	 https://hyperledger-fabric.readthedocs.io/en/release-1.4/raft_configuration.html
12Bringing Up a Kafka-based Ordering Service¶
	 https://hyperledger-fabric.readthedocs.io/en/release-1.4/kafka.html
13The Ordering Service¶
	 https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html
14The Ordering Service¶
	 https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html

14HEDERA CONSENSUS SERVICE

While RAFT is easier to set up and manage than Kafka-based ordering services (another option in
Hyperledger Fabric), it still has two drawbacks:

1	 Configuration Complexity: There are four interrelated steps in the process of
bootstrapping a Hyperledger Fabric ordering node15 and six steps to add a new
node to a Raft cluster.16

2	 Byzantine Fault Tolerance: A Byzantine fault is a condition where components may
act in a malicious way. It even includes the situation where the network itself may 		
be controlled by an attacker.17 Raft is the first step toward Fabric’s development of
a Byzantine fault tolerant (BFT) ordering service but it isn’t Byzantine fault
tolerant today.18

FABRIC PLUGIN
& FABRIC PEERS

MAINNET
NODES

MIRROR
NODES

Notify 4 Gossip of transactions between nodes
with mainnet and mirror nodes
calculating consensus timestamp
& generating state-proofs.

 2

1CLIENT
APPLICATION

SDK
INTERFACE

Broadcasts endorsed
messages the Hedera node of
choice (or randomly)

Publish order to all
registered Peers. Peers can
register with any or many
mirror nodes.

3

Run by Fabric network members

Run by Council/public

Byzantine – Hyperledger Fabric network
can inherit the ABFT nature of the
hashgraph consensus algorithm because
any Fabric peer can communicate with
any mainnet or mirror net node. Any
non-malicious node will have the same
record and state proof for a transaction.
Malicious nodes would become apparent
immediately because their records would
contradict. Therefore only one mirror
net node needs to be running for the
system to be honest.

Figure 1C: Hyperledger Fabric/ Hedera Consensus Service Interoperability

The Hedera Consensus Service will make a global, fault tolerant, and cost-effective
ordering service available to any Hyperledger Fabric network built today.19

15Setting Up an Ordering Node¶
	 https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer_deploy.html
16Configuring and Operating a Raft Ordering Service¶
	 https://hyperledger-fabric.readthedocs.io/en/release-1.4/raft_configuration.html
17Byzantine Fault
	 https://en.wikipedia.org/wiki/Byzantine_fault
18The Ordering Service¶
	 https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html
19Introduction

https://hyperledger-fabric.readthedocs.io/en/release-1.2/whatis.html

15HEDERA CONSENSUS SERVICE

The diagram on the previous page demonstrates the architecture for enabling any Hyperledger
Fabric network to use the Hedera Consensus Service. In doing so the Hyperledger Fabric network can
inherit the Byzantine nature of the Hedera public network.

In step 1 the client application will broadcast an endorsed message to the Hedera network. The
transaction will have been endorsed by the Hyperledger Fabric peers using the endorsement policy.
The client application can submit the transaction to any of the mainnet nodes, or even multiple if it
would like a higher degree of confidence that the transaction is submitted to the network.

The transaction could be passed as any byte array (hash of the transaction, unique transaction
id, etc.) and would include a topic which identifies the transaction as belonging to the specific
Fabric network. The transaction would then get a consensus timestamp from the Hedera network,
preparing it to be ordered.

Mirror nodes would also receive gossip from the mainnet nodes to calculate the consensus timestamp
and generate a state proof themselves. One or many mirror nodes would then publish the order to a
registered set of Hyperledger Fabric Peers. These transactions would then be structured and stored
using a running hash to create a tamper proof chain of ordered transactions relevant to the
Fabric network.

Any Fabric peer can communicate with any mainnet or mirror net node. Any non-malicious node will
have the same record and state proof of a transaction. Malicious nodes would become apparent
immediately because they would be unable to provide valid state proofs.

The Hedera Consensus Service provides any Fabric network the ability to order transactions with
high throughput using a global network of nodes that do not need to be operated or individually
trusted by the members of the Fabric network. This will reduce operational cost of Fabric-based
solutions, improve resiliency to data center outages, and alleviate the need to determine who
operates private Fabric ordering services per network.

16HEDERA CONSENSUS SERVICE

 20Networks have different privacy requirements. Certain networks could choose to use rotating or more anonymized 		
	 topics to make their transactions harder to identify.

Use Case
We will explore the example of a Fabric network security token followed by a
decentralized stock market in this paper to demonstrate the use of the Hedera
Consensus Service in operation.

Private Network Token Issuance
A private network based on Hyperledger Fabric could issue a token for securities trading between
regulated industries. This could be a fungible token representing fractional ownership in a specific
property where only permissioned investors can purchase or trade the asset.

The members or network administrator would create a topic and communciate the topic ID to all
members of the network, so they can recognize both the network and token for the
associated transaction.20

When user A transfers a token to user B, the client application would automatically hash the
transaction ID and submit it in the message payload of a transaction while specifying the correct
topic. The transaction would be signed by the user’s client application and sent to the Hedera
public network.

Once the record is returned with an order of the message, the client application would complete the
transfer between users, now having a fair and final consensus timestamp on when the transaction
occurred. At scale the application would be able to determine which transfers come first, and which
may be invalid depending on their timestamp. Users would be able to query the mirror node or the
mainnet directly to confirm the record for a given transaction, or use mirror nodes to look further
back in time to ensure the application is decentralized correctly.

The same network could also support atomic swaps of security tokens between networks. Say user
A came to an agreement to trade token 1 for token 2, a token issued and traded in another regulated
network and currently owned by user C.

In order to exchange the tokens, each user would be a participant in each network. In this use-case
this may be required because both networks act as regulated financial markets where the investors
are verified.

Each token would then be locked up in a smart contract deployed in each network that requires
signatures from both users and a timestamp from a transaction on the Hedera public network. Each
user will agree to unlock (transfer) the tokens to the new owner simultaneously when triggered by a
transaction sent to the Hedera Consensus Service and returned with a consensus timestamp.

17HEDERA CONSENSUS SERVICE

 21On A ‘rigged’ Wall Street, Milliseconds Make All The Difference
	 https://www.npr.org/2014/04/01/297686724/on-a-rigged-wall-street-milliseconds-make-all-the-difference

The Fabric-Hedera architecture enables the benefits of permissioned asset trading in a private
network and the decentralized trust and immutability of the Hedera public network. Users do
not have to worry about manipulation of the transaction order by a centralized party and have
confidence that the service can sustain downtime from individual nodes.

Ordering for a Stock Market
Stock markets typically foster behavior causing financial firms to spend millions to get a millisecond
advantage in the amount of time it takes them to communicate their bid or ask to the stock market.21
This fosters malicious behavior where certain firms front run others in order to achieve a financial advance.

Stock markets built on Hedera will deliver fairness to all market participants.

A stock market could be built as an application in either a private network, similar to the token
trading use case above, or directly on top of a mirror node or series of mirror nodes. These mirror
nodes would run software which allows them to receive messages from the mainnet including the
consensus timestamp and order. They may only listen to messages sent to the topic related to the
stock market built on top.

A user of the application would submit their bid or ask to the Hedera Consensus Service either in an
anonymized manner using a random transaction ID, or as a plaintext bid or ask. The message would
include a topic which identifies it as belonging to either a specific market or even asset class.

The message would receive a consensus order and timestamp and be returned to the single or
multiple mirror nodes running the stock market. The mirror nodes would only be listening for
messages which have the correct topic to reduce storage burden. A local database would be
structured with the ordered messages.

The application would be able to use this database to match bids and asks based on their consensus
timestamps to operate an efficient and fair stock market.

If a user doesn’t trust a mainnet node they can submit to one or multiple other nodes rather than be
bottlenecked by a single source of truth. If a user doesn’t trust one mirror node, they would be able
to ask it for a state proof, or ask any other mirror node for the records of transactions and even
ask the mainnet for a state proof if they choose. The users may even be able to run the mirror node
themselves to additionally verify the outcomes of the stock market.

Any honest node would be able to cryptographically prove they are right and the other is wrong.

18HEDERA CONSENSUS SERVICE

Liars in this use case (users, mirror nodes) would be shown immediately because two node’s results
will conflict with each other. The barrier for these malicious users to impact the overall consensus
process is also much higher through the use of a public network. A single entity (or an aligned group)
would need to attain at least 1/3 of all the hbars in existence to materially impact consensus. In
smaller private networks this barrier is lower due to both the fewer number of participants and lack
of proof-of-stake security mechanism.

It is most likely that stock market applications will add privacy to the above architecture to keep
certain information confidential. The application in this case could encrypt the message and submit
it to Hedera. Only the appropriate parties would be able to read the message while Hedera would only
know that some message was processed.

The application would then decrypt the message using its key before comparing the bids and asks.
This allows for true privacy for the stock market.

19HEDERA CONSENSUS SERVICE

Additional Opportunities
The previous two use cases scratch the surface of potential use cases of the Hedera Consensus
Service. Ride hailing applications could use the service to match supply with demand for a taxi in real
time. Supply chains could use the service to get an accurate and fair timestamp for asset transfers
across a supply chain. Parts manufactures could use the service for real time actions of goods. IoT
manufacturers could use the service to get a consensus timestamp on data read outs from sensors
across the globe.

The Hedera Consensus Service provides another tool in the box of application builders for leveraging
the power of decentralization.

20HEDERA CONSENSUS SERVICE

Conclusion
The Hedera Consensus Service brings the value of fast, fair, secure, and decentralized consensus
to any application – private ledger based or not. Organizations and individuals can issue and trade
tokens between private ledger by using the fair global ordering of transactions for any application.

The Hedera Consensus Service reduces the cost of operating private networks, enables
both privacy and scalability, and improves the trust model over both private ledgers and
centralized servers.

As with the other Hedera network services, the value of the Consensus Service will be realized most
by the diverse applications built on the network by developers from organizations of any size or focus.
Long term this will enable a network of interconnected applications leveraging a common service for
the ordering of transactions within and between their user bases.

© 2019 Hedera Hashgraph, LLC. All rights reserved.

The Hedera Hashgraph logo is a trademark of Hedera Hashgraph, LLC. All other company and product names may be
trademarks of the respective companies with which they are associated.

What future will you build?

